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Abstract

The subject of this paper is the numerical simulation of the interaction of two-dimensional incompressible viscous

flow and a vibrating airfoil. A solid airfoil with two degrees of freedom, which can rotate around the elastic axis and

oscillate in the vertical direction, is considered. The numerical simulation consists of the finite element solution of the

Navier–Stokes equations, coupled with the system of ordinary differential equations describing the airfoil motion. The

high Reynolds numbers considered 1052106 require the application of a suitable stabilization of the finite element

discretization. The method presented in this paper is based on the laminar model and the turbulence modelling is not

applied here. The time-dependent computational domain and a moving grid are taken into account with the aid of the

arbitrary Lagrangian–Eulerian (ALE) formulation of the Navier–Stokes equations. Special attention is paid to the time

discretization and the solution of the nonlinear discrete problem on each time level is performed. As a result, a

sufficiently accurate and robust method is developed, which is applied to the case of flow-induced airfoil vibrations with

large amplitudes after the loss of aeroelastic stability. The computational results are compared with known

aerodynamical data and with results of aeroelastic calculations obtained by NASTRAN code for a linear

approximation.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The interaction of fluid flow and an elastic structure plays an important role in many technical disciplines—airplane

industry (e.g., wings deformations), bladed machines (turbines, compressors, pumps), civil engineering (stability of

bridges), etc. The research in aeroelasticity or hydroelasticity focuses on the interaction between moving fluids and

vibrating structures [see, e.g., Dowell (1995), Naudasher and Rockwell (1994)]. Widely used commercial codes, as e.g.

NASTRAN, FLUENT or ANSYS, can solve only special problems of aeroelasticity or hydroelasticity and are mainly

limited to linearized models. Using NASTRAN, the critical fluid flow velocity can be determined, but the post-flutter
e front matter r 2006 Elsevier Ltd. All rights reserved.
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esses: svacek@marian.fsik.cvut.cz (P. Sváček), feist@karlin.mff.cuni.cz (M. Feistauer), jaromirh@it.cas.cz

www.elsevier.com/locate/jfs
dx.doi.org/10.1016/j.jfluidstructs.2006.10.005
mailto:jaromirh@it.cas.cz
mailto:jaromirh@it.cas.cz


ARTICLE IN PRESS

Nomenclature

c airfoil chord (m)

DðtÞ aerodynamic drag force (N)

dhh structural damping in bending (kg/s)

daa structural damping in torsion

ðkgm2=ðs radÞÞ
EO elastic axis

h vertical displacement of the elastic axis EO

(downwards positive) (m)

Ia inertia moment around the elastic axis EO

ðkgm2Þ

khh bending stiffness (N/m)

kaa torsional stiffness (Nm/rad)

LðtÞ aerodynamic lift force (upwards positive)

(N)

l airfoil depth (m)

MðtÞ aerodynamic torsional moment (clockwise

positive) (Nm)

m mass of the airfoil (kg)

Sa static moment around the elastic axis EO

(kgm)

a rotational displacement around the elastic

axis EO (clockwise positive) (rad)
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behaviour and other nonlinear phenomena for large amplitudes of vibration cannot be captured. Since the appearance

of any aerodynamic instability is not admissible in normal flight regimes, the nonlinear postcritical limit states usually

had not been considered. Recently, the modelling of post-flutter behaviour began to be more important.

Flutter at large deformations can be studied by analytical methods (Holmes and Marsden, 1977) only in some special

cases. Nevertheless, the real situation is usually much more complicated. It is necessary to consider viscous flow,

changes of the flow domain in time, turbulence effects, nonlinear behaviour of the elastic structure and to solve

simultaneously the evolution systems for the fluid flow and for the oscillating structure. Considering the Navier–Stokes

equations and a vibrating structure with large displacements, when the change of the fluid domain cannot be neglected,

methods with moving meshes must be employed [see, e.g., Farhat et al. (1995), Le Tallec and Mouro (2001)]. Moreover,

the application of efficient and robust methods for the numerical solution of the nonlinear Navier–Stokes system is

required. The underlying mathematical model depends on the qualitative properties of the fluid flow, and for lower flow

velocities the fluid can be treated as incompressible.

Very strong nonlinear self-sustained pitch vibrations of a guide blade of a water turbine were observed, for example,

by Půlpitel (1984), when a flexibly supported blade with one degree of freedom (rotation considered only) vibrated near

a rigid wall of the water tunnel, where large-scale experiments were realized.

Unsteady flow fields around airfoils oscillating with large amplitudes in pitch motion and associated dynamic stall

phenomena were investigated by Tuncer et al. (1990). A viscous flow analysis based on an integro-differential

formulation of the Navier–Stokes equations, was developed. The full viscous flow analysis of the NACA 0012 airfoil has

shown that the dynamics of the leading-edge vortex has a dominant effect on the dynamic stall behaviour of the system.

The incompressible, viscous flow over two-dimensional elliptic airfoils oscillating in pitch at large angles of attack has

been simulated numerically for Reynolds number 3000 by Akbari and Price (2000) with the aid of a vortex-in-cell method.

The existence of limit-cycle oscillations of aeroelastic wing sections with structural nonlinearity was studied by Singh

and Brenner (2003). The chosen dynamic model describes the nonlinear plunge and pitch motion of the wing. The limit-

cycle calculations and orbital stability analysis were performed. Numerical results show that the predicted limit-cycle

oscillation amplitude and frequency correspond approximately to actual values. However, only linear quasi-steady

aerodynamic theory was considered in this study.

The possible existence of internal resonance and related nonlinear phenomena was recently published by Gilliatt et al.

(2003). The authors showed that, for specific classes of aeroelastic systems with nonlinearities, aeroelastic instabilities

may appear which are not predicted by traditional (linear) approaches. The studied system exhibited a resonance

behaviour under subcritical conditions.

A new stochastic controller for a dynamic system under irregular sudden disturbance has been developed by Heo et

al. (2003). A flutter control simulation for a thin airfoil in turbulent flow was conducted numerically and used for an

active suppression of flutter.

The unsteady, incompressible, viscous laminar flow over a pitching NACA 0012 airfoil was numerically simulated for

a prescribed frequency of oscillation by Akbari and Price (2003). A vortex method was used to solve the 2-D

Navier–Stokes equations in the vorticity/stream-function form. It was observed that the reduced frequency has the

main influence on the flow field during dynamic stall of this airfoil.

This paper is focused on the numerical simulation of aeroelastic problem of two-dimensional viscous incompressible

air flow and an airfoil with two degrees of freedom. The airfoil is considered as a solid flexibly supported body, allowing

vertical and torsional vibrations. Transient motion of the airfoil before or after loss of stability is also addressed.
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The mathematical model of the fluid flow is represented by the system consisting of the 2-D Navier–Stokes equations

and the continuity equation, equipped with initial conditions and mixed boundary conditions. The incompressible flow

problems include a wide range of complications, typical of the numerical solution of singularly perturbed partial

differential equations. There exist a number of various numerical techniques for the solution of the Navier–Stokes system.

Beside the finite difference method, an alternative is the finite volume method [see, e.g., Fürst et al. (2001), Fořt et al.

(2002), Honzátko et al. (2004)], which is rather popular in Computational Fluid Dynamics. However, the construction of

higher-order accurate finite volume methods for the solution of incompressible viscous flow is quite difficult.

In the case of flows in domains with complicated geometry and under mixed boundary conditions it appears that it is

more suitable to use the finite element method (FEM). It is well-known that FEM can be applied with success to a large

variety of problems. However, in the finite element solution of incompressible Navier–Stokes equations one has to

overcome several important obstacles. First, it is necessary to take into account that the finite element velocity/pressure

pair has to be suitably chosen in order to satisfy the Babuška-Breezi condition, which guarantees the stability of the

scheme—see, e.g., Girault and Raviart (1986) or Gresho and Sani (2000). Further, the dominating convection requires

the introduction of some stabilization of the finite element scheme, such as upwinding or the streamline-diffusion

method (also called SUPG method)—see, e.g., Feistauer et al. (2003, Chapter 4). However, the published stabilized

methods can usually be applied with success to problems with Reynolds numbers less than 5� 104, whereas for the

problem studied here the relevant Reynolds numbers are usually in the range 1052106. In such a case, it is necessary to

use a sophisticated choice of stabilization parameters based on a careful theoretical mathematical analysis, as carried

out, by Lube (1994) and Gelhard et al. (2005) for example. For a practical implementation in the framework of an

aeroelastic problem, see Sváček and Feistauer (2004). Moreover, it is necessary to design carefully the computational

mesh, using adaptive grid refinement in order to allow an accurate resolution of time oscillating thin boundary layers,

wakes and vortices. In our case we use the anisotropic mesh adaptation technique of Dolejšı́ (2001) for the construction

and adaptive refinement of the mesh.

Due to the motion of the airfoil, the computational domain is time-dependent. This requires to use techniques working

on moving meshes. A suitable choice is to apply the arbitrary Lagrangian–Eulerian (ALE) method, which is based on the

reformulation of the Navier–Stokes equations (Nomura and Hughes, 1992; Le Tallec and Mouro, 2001) using an ALE

mapping of the reference configuration onto the current configuration for the time under consideration. The ALE

formulation of the Navier–Stokes equations is coupled with the structural model, describing the airfoil vibrations.

The use of FEM leads to a large discrete system of nonlinear algebraic equations. In order to solve the problem in the

shortest possible time, a suitable linearization and a sufficiently fast solver has to be applied in each time step. The

multilevel methods are usually very efficient for the solution of linear systems arising from discretization of partial

differential equations [e.g. multigrid, domain decomposition; see Quarteroni and Valli (1999)]. Although these methods

are very efficient for symmetric linear problems, their application to the Navier–Stokes equations is not quite

straightforward (Turek, 1999; Otto and Lube, 1998). The situation is even more complicated on unstructured

anisotropic grids. Here, a direct solver from Davis and Duff (1999) for linear systems is employed, working sufficiently

efficiently for systems with up to 105 unknowns.

In the present paper, attention is paid step-by-step to the following aspects: second order time discretization and

space finite element discretization of the Navier–Stokes equations, SUPG stabilization of the FEM, the choice of

stabilization parameters, discretization of the structural model, numerical realization of the nonlinear discrete problem

including the coupling of the fluid flow and airfoil motion. The developed sufficiently accurate and robust method is

applied to a technically relevant case of flow-induced airfoil vibrations. The computational results are compared with

available aerodynamic and aeroelastic data and NASTRAN code calculations.
2. Formulation of the problem

First we introduce the initial-boundary value problem describing the fluid flow motion, consisting of the continuity

equation and the Navier–Stokes equations rewritten in the ALE form, and suitable initial and boundary conditions.

Furthermore, we introduce the system of ordinary nonlinear differential equations of airfoil vibrations and formulate

the coupling between the moving fluid and vibrating structure.

2.1. Description of the fluid flow

We assume that ð0;TÞ is a time interval and we denote by Ot a computational domain occupied by the fluid

at time t. We denote by u ¼ uðx; tÞ and p ¼ pðx; tÞ, x 2 Ot, t 2 ð0;TÞ the flow velocity and the kinematic pressure
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(i.e., dynamic pressure divided by the density r of the fluid) and n denotes the kinematic viscosity. We

have u ¼ ðu1; u2Þ, where u1 and u2 are the components of the velocity in the directions of the Cartesian coordinates

x1 and x2 of x. By R and R2 we denote the set of all real numbers and the set of all two-dimensional vectors,

respectively.

In order to simulate flow in a moving domain, we employ the arbitrary Eulerian–Lagrangian (ALE) method, based

on an ALE mapping

At:Oref ! Ot; X 7!xðX ; tÞ ¼ AtðX Þ, (1)

of the reference configuration Oref ¼ O0 onto the current configuration Ot, with the ALE velocity w ¼ qAt=qt. We

suppose that the ALE velocity at each point on the surface of the airfoil is equal to the velocity of its motion. By DA=Dt

we denote the ALE derivative—i.e. the derivative with respect to the reference configuration. The ALE mapping is

shown in Fig. 1. In the domain Ot we consider the Navier–Stokes system written in the following ALE form, cf.

Nomura and Hughes (1992):

DA

Dt
uþ ½ðu� wÞ � r�uþrp� nDu ¼ 0, (2)

r � u ¼ 0, (3)

to which we add the initial condition

uðx; 0Þ ¼ u0; x 2 O0, (4)

and boundary conditions

ðaÞ ujGD
¼ uD; ðbÞ ujGWt

¼ wjGWt
,

ðcÞ � ðp� pref Þnþ n
qu

qn
¼ 0 on GO. ð5Þ

Here n is the unit outer normal to the boundary qOt of the domain Ot, GD represents the inlet (and, possibly, fixed

impermeable walls), GO is the outlet and GWt is the boundary of the airfoil at time t. Condition (5b) represents the

assumption that the fluid adheres to the airfoil. We denote by pref a prescribed reference outlet pressure. The choice of a

suitable boundary condition on the outlet is a delicate question. In order to allow a good resolution of a wake

propagation through the outlet, we use here the ‘‘soft’’ boundary condition (5c) [often called the do-nothing

condition—see Turek (1999)].

2.2. Description of the airfoil motion

We assume that the airfoil has two degrees of freedom. This means that we consider the airfoil as a solid body, which

can oscillate in the vertical direction and in the angular direction around the so-called elastic axis.
Ω0
ΓW0

ΓO

ΓD

Ω t

ΓWt

At

Fig. 1. ALE mapping of the reference configuration O0 onto the current configuration Ot.
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In order to simulate the airfoil oscillations with large displacements, we include geometrical nonlinearities into the

equations of motion, which have the form [see, e.g., Horáček et al. (2003)]

m €hþ khhhþ Sa €a cos a� Sa _a2 sin aþ dhh
_h ¼ �LðtÞ; Sa

€h cos aþ Ia €aþ kaaaþ daa _a ¼MðtÞ, ð6Þ

where we use the notation defined in the Nomenclature.

The vertical and torsional motion with small vibration amplitudes of the angle a and its derivative _a is described by

the linearized system of ordinary differential equations

m €hþ khhhþ Sa €aþ dhh
_h ¼ �LðtÞ,

Sa
€hþ Ia €aþ kaaaþ daa _a ¼MðtÞ. ð7Þ

Systems (6) or (7) are equipped with the initial conditions prescribing the values hð0Þ, að0Þ, _hð0Þ, _að0Þ. Then they are

transformed to first-order ODE systems and solved numerically by the fourth-order Runge–Kutta method. The

derivation of Eqs. (6) and (7) is given in Appendix A.

The aerodynamic lift force L acting in the vertical direction, the torsional moment M and the drag force D are

defined by

L ¼ �l

Z
GWt

X2
j¼1

t2jnj dS; M ¼ þl

Z
GWt

X2
i;j¼1

tijnjr
ort
i dS; D ¼ �l

Z
GWt

X2
j¼1

t1jnj dS, ð8Þ

where

tij ¼ r �pdij þ n
qui

qxj

þ
quj

qxi

� �� �
; rort1 ¼ �ðx2 � xEO2Þ; rort2 ¼ x1 � xEO1, ð9Þ

By tij we denote the components of the stress tensor, dij denotes the Kronecker symbol, n ¼ ðn1; n2Þ is the unit outer

normal to qOt on GWt (pointing into the airfoil) and xEO ¼ ðxEO1; xEO2Þ is the position of the elastic axis (lying in the

interior of the airfoil). Relations (8) and (9) define the coupling of the fluid dynamical model with the structural model.

In Section 3.4 we shall present an efficient method of the calculation of the quantities L and M.
3. Discretization of the Navier–Stokes equations

3.1. Time discretization

First let us describe the time discretization of the problem. We consider a partition 0 ¼ t0ot1o � � �oT ; tk ¼ kt, with a

time step t40, of the time interval ½0;T � and approximate the solution uðtnÞ (defined in Otn
) at time tn by un. For the time

discretization we use a second-order two-step scheme using the computed approximate solution un�1 in Otn�1
and un in Otn

for the calculation of unþ1 in the domain Otnþ1
. We approximate the ALE velocity wðtnþ1Þ by wnþ1 and set ûi

¼

ui � Ati
� A�1tnþ1

(the symbol � denotes the composite function). The vector-valued functions ûi are defined in the domain Otnþ1
.

Then, on each time level tnþ1, the second-order two-step ALE time discretization yields the problem of finding

unknown functions unþ1 : Otnþ1
! R2 and pnþ1 : Otnþ1

! R satisfying the equations

3unþ1 � 4ûn
þ ûn�1

2t
þ ððunþ1 � wnþ1Þ � rÞunþ1 � nDunþ1 þrpnþ1 ¼ 0; div unþ1 ¼ 0, ð10Þ

in Otnþ1
, and the boundary conditions (5).
3.2. Space discretization

The starting point for the finite element discretization of problem (10) with the boundary conditions (5) is the so-

called weak formulation. To this end we introduce the simplified notation O :¼Otnþ1
; u :¼ unþ1; p :¼ pnþ1 and write system

(10) in the form

3u� 4ûn
þ ûn�1

2t
þ ððu� wnþ1Þ � rÞu� nDuþ rp ¼ 0; div u ¼ 0, ð11Þ
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considered with the boundary conditions (5). Moreover, we define the velocity spaces W ;X and the pressure space Q:

W ¼ ðH1ðOÞÞ2; X ¼ fv 2W ; vjGD[GWt
¼ 0g, (12)

Q ¼ L2ðOÞ, (13)

where L2ðOÞ is the Lebesgue space of square integrable functions over the domain O, and H1ðOÞ is the Sobolev space of

square integrable functions together with their first order derivatives.

Now, if we multiply the first and second equation in (11) by any function v 2 X and q 2 Q, respectively, sum them,

integrate over O, transform the terms containing Du and rp with the aid of Green’s theorem and use the boundary

condition (5c), we find that the solution U ¼ ðu; pÞ of the problem of Eqs. (11) and (5) satisfies the condition

aðU ;U ;V Þ ¼ f ðV Þ for all V ¼ ðv; qÞ 2 X �Q, (14)

and conditions (5a,b). (The boundary condition (5c) is hidden in the identity (14).) Denoting by

ða; bÞo ¼
Z
o
abdx, (15)

the scalar product in L2ðoÞ for some set o, we can write

aðU�;U ;VÞ ¼
3

2t
ðu; vÞO þ nðru;rvÞO þ ðððu

� � wnþ1Þ � rÞ u; vÞO � ðp;r � vÞO þ ðr � u; qÞO,

f ðV Þ ¼
1

2t
ð4ûn
� ûn�1; vÞO �

Z
GO

prefv � ndS; U ¼ ðu; pÞ; V ¼ ðv; qÞ; U� ¼ ðu�; pÞ. ð16Þ

In order to apply the Galerkin FEM, we approximate the spaces W ;X ;Q from the weak formulation by finite

dimensional subspaces WD, XD, QD, D 2 ð0;D0Þ, D040, XD ¼ fvD 2WD; vDjGD\GWt
¼ 0g. Hence, we define the discrete

problem to find an approximate solution UD ¼ ðuD; pDÞ 2WD �QD such that uD satisfies approximately conditions

(5a,b) and the identity

aðUD;UD;VDÞ ¼ f ðVDÞ for all VD ¼ ðvD; qDÞ 2 XD �QD. (17)

The couple ðXD;QDÞ of the finite element spaces should satisfy the Babuška–Brezzi (BB) condition [see, e.g., Girault and

Raviart (1986), Gresho and Sani (2000), and Verfürth (1984)]. In practical computations we assume that the domain O is a

polygonal approximation of the region occupied by the fluid at time tnþ1 and the spaces WD, XD, QD are defined over a

triangulation TD of the domain O, formed by a finite number of closed triangles K 2 TD. Here D denotes the size of the

mesh TD. The spaces WD, XD and QD are formed by piecewise polynomial functions. In our computations, the well-known

Taylor–Hood P2=P1 conforming elements are used for the velocity/pressure approximation. This means that pD is a linear

function and uD is a quadratic vector-valued function on each element K 2 TD.

3.3. Stabilization of the FEM

The standard Galerkin discretization (17) may produce approximate solutions suffering from spurious oscillations

for high Reynolds numbers. In order to avoid this drawback, the stabilization via streamline-diffusion/Petrov–Galerkin

technique is applied [see, e.g., Lube (1994), Gelhard et al. (2005)]. The stabilization terms are defined as

LDðU
�;U ;V Þ ¼

X
K2TD

dK

3

2t
u� nDuþ ð ~w � rÞuþ rp; ð ~w � rÞv

� �
K

,

FDðV Þ ¼
X

K2TD

dK
1

2t
ð4ûn
� ûn�1

Þ; ð ~w � rÞv

� �
K

; U ¼ ðu; pÞ; V ¼ ðv; qÞ; U� ¼ ðu�; pÞ, ð18Þ

where the function ~w stands for the transport velocity, i.e. ~w ¼ u� � wnþ1, ð�; �ÞK denotes the scalar product in L2ðKÞ,

defined by (15), and dKX0 are suitably chosen parameters. Moreover, the additional grad-div stabilization

PDðU ;V Þ ¼
X

K2TD

tK ðr � u;r � vÞK ; U ¼ ðu; pÞ; V ¼ ðv; qÞ, ð19Þ

is introduced with suitably chosen parameters tKX0.

The stabilized discrete problem reads: Find UD ¼ ðuD; pDÞ 2WD �QD such that uD satisfies approximately conditions

(5)(a), (b) and

aðUD;UD;VDÞ þ LDðUD;UD;VDÞ þ PDðUD;VDÞ ¼ f ðVDÞ þ FDðVDÞ for all VD ¼ ðvD; qDÞ 2 XD �QD. ð20Þ
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The choice of the parameters dK and tK is carried out according to Lube (1994) or Sváček and Feistauer (2004). The

parameter dK is defined on the basis of the local transport velocity ~w, namely,

dK ¼ d�
hK

2k ~wk1;K
xðRe ~wÞ, (21)

where

Re ~w ¼
hKk ~wk1;K

2n
(22)

is the local Reynolds number and hK is the size of the element K measured in the direction of ~w and the symbol k � k1;K
denotes the norm in the space L1ðKÞ:

k ~wk1;K ¼ maxK j ~wj. (23)

The factor xð�Þ is defined by

xðRe ~wÞ ¼ min
Re ~w

6
; 1

� �
. (24)

It appears that for P2=P1 elements it is possible to set tK � 1 for all K 2 TD.

The nonlinear algebraic discrete system (20) is solved on each time level tnþ1 with the aid of the linearized Oseen

iterative process

aðU
ð‘Þ
D ;U

ð‘þ1Þ
D ;VDÞ þ LDðU

ð‘Þ
D ;U

ð‘þ1Þ
D ;VDÞ þ PDðU

ð‘þ1Þ
D ;VDÞ ¼ f ðVDÞ þ FDðVDÞ for all VD 2 XD �QD, ð25Þ

where we start from the initial approximation U
ð0Þ
D ¼ ðû

n; p̂n
Þ or U

ð0Þ
D ¼ ð2ûn

� ûn�1; 2p̂n
� p̂n�1

Þ. It is enough to compute

5–8 Oseen iterations on each time level.

The solution of the linearized algebraic systems equivalent to (25) is realized by the direct solver UMFPACK (Davis

and Duff, 1999), which works sufficiently fast for systems with up to 105 equations. For larger systems it is necessary to

apply more robust and efficient iterative techniques, such as the domain decomposition approach and/or the multigrid

method.

The computational process proceeds in such a way that the computed approximate solution UD of problem (20) on

time levels tn and tn�1 and the corresponding force F and moment M are extrapolated and used for obtaining h and a at

time tnþ1 by the fourth-order Runge–Kutta method. This allows us to determine the mapping Atnþ1
of the reference

domain Oref onto the domain Otnþ1
and to approximate the ALE velocity wnþ1. Then the solution of problem (20) is

performed on the next time level tnþ1. In order to increase the stability of the process in the case of large far field

velocities, a small proportional viscous damping was introduced into systems (6) and (7). Namely, we add the term

ekhh
_h and ekaa _a to the left-hand side of the first equation and the second equation, respectively, of systems (6) and (7),

with 0oe51.

3.4. Computation of the force L and moment M

The evaluation of the lift L and the moment M at time t ¼ tnþ1 from the approximate solution UD ¼ ðuD; pDÞ
computed as the solution of the stabilized discrete problem (20) can be carried out in two ways:
(a)
 One possibility is to compute the components tij of the stress tensor at time t :¼tnþ1 from formula (9) on the

elements K 2 TD adjacent to the airfoil GWt, extrapolate tij to the airfoil GWt and then to compute L and M by the

integration along GWt according to (8).
(b)
 More accurate approach, which fits better for the weak formulation of the problem, can be obtained in the

following way. The Navier–Stokes equations in the ALE form discretized with respect to time at instant t :¼ tnþ1 can

be expressed component-wise as
3ui � 4ûn
i þ ûn�1

i

2t
þ ððu� wnþ1Þ � rÞui ¼

X2
j¼1

qtij

qxj

in Ot; i ¼ 1; 2. (26)

Let us set

OGWt
¼ [fK 2 TD; K \ GWta;g. (27)



ARTICLE IN PRESS
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This represents a one layer strip around the airfoil formed by finite elements. Multiplying Eq. (26) with i ¼ 2 by a

function j 2WD such that

jðxÞ ¼ 1 for x 2 GWt; jðxÞ ¼ 0 outside the set OGWt
, ð28Þ

integrating over OGWt
, applying Green’s theorem to the terms with tij and, finally, writing the already known finite

element approximations uD, un
D and un�1

D instead of the functions u; un and un�1, respectively, we arrive at the

representation of the force L:

L

l
¼ �

Z
OGWt

3uD2 � 4ûn
D2 þ ûn�1

D2

2t
þ ððuD � wnþ1Þ � rÞuD2

 !
j�

X2
j¼1

t2j
qj
qxj

dx. (29)

(Here we use the notation uD ¼ ðuD1, uD2Þ, ûn
D ¼ ðû

n
D1; û

n
D2Þ, etc.)

Similarly, if we use the vector-valued function vort ¼ ðvort1 ; vort2 Þ ¼ jðrort1 ; rort2 Þ, where the functions rort1 ; rort2 are defined

by (9), we can derive the formula

M

l
¼ þ

Z
OGWt

3uD � 4ûn
D þ ûn�1

D

2t
þ ððuD � wnþ1Þ � rÞuD

 !
� vort dxþ

Z
OGWt

X2
i;j¼1

tij
qvorti

qxj

dx. (30)

4. Numerical results

In this section we shall present several computational examples in order to show the applicability of the described

method.

4.1. Validation of the method

In order to validate the presented technique, we compare our computations with some experimental results.

First, we define the stationary aerodynamic quantities—the lift coefficient

cL ¼
L

1
2
rU2
1lc

, (31)

the drag coefficient

cD ¼
D

1
2
rU2
1lc

, (32)

and the torsional moment coefficient

cM ¼
M

1
2
rU2
1lc2

, (33)

and show the comparison of the time averaged coefficients cL and cM as a function of the angle of attack, computed for

a fixed airfoil NACA 6322415 in the case of the Reynolds number Re ¼ 8� 105, with experimental results from NACA

(1945), see Figs. 2 and 3. Fig. 4 shows the dependence of cD on cL in comparison with results from NACA (1945). We

see a very good agreement for cL and cM , which is necessary for the accuracy of the developed coupled fluid-structure

interaction computational technique. The differences between the computed and measured values of the drag coefficient

cD are due to several reasons. It is well-known that the precise computation of the drag is rather difficult and requires a

very good and fine mesh. Moreover, for the high Reynolds numbers considered it might be necessary to apply a suitable

model of turbulence. On the other hand, the drag values are not crucial for our aeroelastic computations.

Further, numerical simulation of flow past the NACA0012 profile with a prescribed vibration around the elastic axis

was carried out. The profile rotation was considered according to the formula a ¼ 10ð1þ sinð2pt=f ÞÞ with frequency

f ¼ U1=ð2pcÞ, where c is the airfoil chord and the Reynolds number Re ¼ 5� 103. The elastic axis was located at 25%

of the chord measured from the leading edge. This type of process was examined experimentally and the results are

contained in Naudasher and Rockwell (1994, Section 7.3.2). In Figs. 5(a)–(f) we present flow patterns, which we

computed for several angles of attack. The agreement with experimental results from Naudasher and Rockwell (1994) is

very good.

Finally, we give here the comparison of computed pressure coefficients for the NACA0012 profile with theoretical

and experimental results from Triebstein (1986) and Benetka et al. (1998). The chord of the airfoil c ¼ 0:1322m, the
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Fig. 3. Comparison of experimental values of the torsional moment coefficient cM with computed time-averaged values in dependence

on the angle of attack a for a fixed nonoscillating airfoil. (Squares denote the computed quantities.)
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Fig. 4. Comparison of experimental values of the drag coefficient cD with computed time-averaged values in dependence on the lift

coefficient cL for a fixed nonoscillating airfoil. (Squares denote the computed quantities.)
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Fig. 2. Comparison of experimental values of the lift coefficient cL with computed time-averaged values in dependence on the angle of

attack a for a fixed nonoscillating airfoil. (Squares denote the computed quantities.)
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Fig. 5. Streamlines of the flow around a moving airfoil for an angle of attack: (a) a ¼ 10:86�; (b) a ¼ 18:34�; (c) a ¼ 20�; (d)

a ¼ 19:46�; (e) a ¼ 12:05�; and (f) a ¼ 7:74�.
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prescribed oscillations are defined by a ¼ a0 sinð2pt=f Þ, the frequency f ¼ 30Hz, the far-field velocity U1 ¼ 136m=s
and the elastic axis is located at 25% of the chord measured from the leading edge.

In Figs. 6 and 7, we present the distribution of the mean value of the pressure coefficient cp, its real part c0p and

imaginary part c00p in dependence on the length of the chord measured from the leading edge for a0 ¼ 1�. The data are

scaled to the pitching oscillation amplitude one radian and far field Mach number Ma ¼ 0:4 according to the

Prandtl–Glauert formula

cp comp ¼
cp incompffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�Ma2
p . (34)

4.2. Modelling of flow induced airfoil vibrations

This section presents results of the numerical simulation of flow induced vibrations obtained for the airfoil NACA

632 � 415. The following quantities are considered: m ¼ 0:086622kg, Sa ¼ �0:000779673 kgm, Ia ¼ 0:000487291
kgm2, khh ¼ 105:109N=m, kaa ¼ 3:695582Nm=rad, l ¼ 0:05m; c ¼ 0:3m, r ¼ 1:225 kg=m3, n ¼ 1:5� 10�5 m=s2. The
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Fig. 6. The mean value of the pressure coefficient cp for a0 ¼ 1�: �, computed values; —–, Triebstein experiment; –��–, Benetka

experiment.

(a) (b)

Fig. 7. (a) Real part c0p and (b) imaginary part c00P for a0 ¼ 1�: �, computed values; —–, Triebstein theory; –��–, Triebstein experiment.
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position of the elastic axis EO and the centre of gravity T of the airfoil measured along the chord from the leading edge

are xEO ¼ 0:4c ¼ 0:12m and xT ¼ 0:37c ¼ 0:111m, respectively. (See Fig. A1 in Appendix A.) The coefficients of the

proportional damping are considered in the form dhh ¼ ekhh and daa ¼ ekaa, where we choose e ¼ 10�3.

The far-field flow velocity is considered in the range U1 ¼ 2� 50m=s, which yields the Reynolds number Re ¼

U1c=n in the range 4� 104 � 106. Although the numerical scheme presented above can be applied on any triangular

mesh, accurate correct results are conditioned by the use of a mesh sufficiently refined in regions of strong gradients, e.g.

in a boundary layer and wake. The anisotropic mesh generator from Dolejšı́ (2001) was employed for the adaptive mesh

refinement and the resulting mesh was adapted to the solution behaviour. Fig. 8 shows the computational domain with

the used triangulation (at time t ¼ 0) consisting of 27 982 triangles (with 14 167 vertices) for the far field velocity

U1 ¼ 10m=s (i.e. Re ¼ 2� 105). In Fig. 9 we see details of the mesh in the vicinity of the airfoil.

The computational process for the solution of the nonstationary problem is based on the coupling of the fluid flow

problem in the discrete form (20) with the numerical solution of the nonlinear structural model (6). It starts at a certain

time dto0 by the solution of the flow, keeping the airfoil in a fixed position given by the prescribed initial translation h0
and the angle of attack a0. Then, at time t ¼ 0 the airfoil is released and we continue by the solution of a complete

fluid–structure interaction problem with hð0Þ ¼ h0 ¼ �50mm, _hð0Þ ¼ 0, að0Þ ¼ a0 ¼ 6�, _að0Þ ¼ 0. In the force L and the

moment M appearing in system (6) the static components are compensated. This means that we set L :¼L� L0,

M :¼M �M0, where the static quantities L0 and M0 are obtained from experimental data shown in Figs. 2 and 3,

respectively, for the angle of attack a ¼ 0.

The simulation of fluid-structure interaction as a function of time is shown in Figs. 10 (a)–(k) for the far-field velocity

U1 ¼ 2, 8, 14, 20, 26, 32, 36, 38, 40, 42 and 45m=s. The left and right panels show the angle of rotation a and the

vertical displacement h, respectively, in dependence on time. In the case of flow velocity 45m/s, the smaller initial values

for the rotational and vertical displacements were chosen, because for larger initial values the vibration amplitudes were

increasing very fast.
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Fig. 8. Triangulation of the computational domain at time t ¼ 0.

Fig. 9. Details of the mesh.
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For the far-field velocity not exceeding 32m=s the vibrations die out in time and the system is stable. Moreover, we

can see that the oscillations are more damped for larger values of the far-field velocity due to the aerodynamic forces.

For flow velocities higher than 32m=s, one can observe the influence of vortices separating from the airfoil. This is seen

particularly in the angle a. On the other hand, for U1X40m=s we get an unstable behaviour with large airfoil

displacements up to 160mm in the vertical direction, and up to 16� in the rotation. This regime resembles a limit cycle
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for postcritical nonlinear oscillations. For U1 ¼ 45m=s we get an unstable process with a fast increase of the vibration

amplitude.

In Čečrdle and Maleček (2002), the NASTRAN flutter analysis carried out with the aid of the strip model for the

fluid flow is presented. The NASTRAN calculations are summarized in Table 1. According to this table the critical

velocities are U1 ¼ 37:7m=s for divergence and U1 ¼ 42:4m=s for flutter, which correspond to our results. Large
(a)

(b)

(c)

(d)

Fig. 10. System response for: (a) U1 ¼ 2m=s; (b) U1 ¼ 8m=s; (c) U1 ¼ 14m=s; (d) U1 ¼ 20m=s; (e) U1 ¼ 26m=s; (f)

U1 ¼ 32m=s; (g) U1 ¼ 36m=s; (h) U1 ¼ 38m=s; (i) U1 ¼ 40m=s; (j) U1 ¼ 42m=s; and (k) U1 ¼ 45m=s.
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(e)

(f)

(g)

(h)

Fig. 10. (Continued)
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static displacement in Figs. 10(a)–(k) are in agreement with the divergence instability predicted by NASTRAN

calculations.

The fluid flow patterns of the velocity and pressure near the vibrating airfoil computed for time instants t ¼ 0:14,
0:21, 0:40, 0:47, 0:53, 0:6, 0:65, 0:72, 0:78, 0:84, 0:89, 0:96, 1:02, and 1:08 s are shown in Figs. 11 and 12. These results

were obtained in the case of the far field velocity U1 ¼ 40m=s and the initial angle of attack a0 ¼ 3�. It is possible to

see the development of vortices leaving the airfoil. The angles a of rotation, corresponding to all chosen time instants,

are marked in Fig. 13.
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(i)

( j)

(k)

Fig. 10. (Continued)

Table 1

The results obtained by NASTRAN code [see Čečrdle and Maleček (2002)]

Predominant Eigenfrequency for Critical flow Instability type Flutter

Translation f 1 ¼ 5:537 U1 ¼ 37:7 Divergence 0

Rotation f 2 ¼ 13:98 U1 ¼ 42:4 Flutter 8:93
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The computations were performed on the computer Intel Pentium 1.6–2.4GHz with RAM 1GB. The physical time

step was chosen in the form Dt ¼ c=ð100U1Þ. The CPU time increases with increasing U1. For example, the CPU time

for the computation of a sequence of the length 0.5 s was approximately 24 h in the case of the far field velocity

U1 ¼ 30m=s. This indicates that for obtaining long time sequences it will be necessary to develop a fast computational

code, based on parallelization of the worked out technique, using, e.g., the domain decomposition method and

combined with a fast solver for large linear systems.



ARTICLE IN PRESS

Fig. 11. The distribution of the velocity (left) and the pressure (right) at time instants t ¼ 0:14, 0:21, 0:40, 0:47, 0:53, 0:6, and 0:65 s for
U1 ¼ 40m=s and a0 ¼ 3�.
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Fig. 12. The distribution of the velocity (left) and the pressure (right) at time instants t ¼ 0:72, 0:78, 0:84, 0:89, 0:96, 1:02, and 1:08 s for
U1 ¼ 40m=s and a0 ¼ 3�.
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Fig. 13. The rotation angles a in dependence on time for U1 ¼ 40m=s and a0 ¼ 3� with marked values corresponding to flow patterns

from Figs. 11 and 12.
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5. Conclusion

The robust finite element method (FEM) for the numerical simulation of interaction of incompressible flow and a

vibrating airfoil is presented. It is based on the combination of several techniques: the arbitrary Lagrangian–Eulerian

(ALE) formulation of the laminar Navier–Stokes equations, suitable time discretization, the finite element method

using velocity/pressure finite element pairs satisfying the Babuška–Brezzi condition, stabilization of the finite element

scheme, linearization of the discrete nonlinear problem, a fast linear solver, the numerical scheme for the solution of

ordinary differential equations describing the vibrations of the airfoil and sufficiently accurate method for the

evaluation of fluid dynamical forces acting on the airfoil. The method presented in this paper uses the laminar model

and the turbulence modelling is not applied here.

The obtained numerical results are comparable with experimental data as well as with the NASTRAN

computations. They indicate that the FEM for the ALE formulation of the Navier–Stokes equations in

time dependent domains, coupled with a structural system, is applicable for flows with high Reynolds

numbers, provided a proper stabilization of the finite element method, well designed mesh and an efficient linear

solver are used.
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P. Sváček et al. / Journal of Fluids and Structures 23 (2007) 391–411 409
Appendix A

A.1. Nonlinear equations of airfoil motion for large vibration amplitudes

A solid flexibly supported airfoil is shown in Figs. A1, A2 and A3. In Fig. A1 the position of the elastic axis ðEOÞ, the

centre of gravity ðTÞ and the airfoil chord ðcÞ are sketched. The airfoil can be vertically displaced and rotated. Fig. A2

shows the elastic support of the airfoil on translational and rotational springs.

The pressure and viscous forces acting on the vibrating airfoil are determined by the components of the stress tensor

(9) and result in the lift force LðtÞ and the torsional moment MðtÞ given by (8). The airfoil in neutral and deformed

positions is shown in Fig. A3, from where it follows that the horizontal and vertical displacements of any point on the

airfoil chord can be expressed as

u ¼ xð1� cos aÞ; w ¼ hþ x sin a, (A.1)

respectively. Here x denotes the local coordinate measured along the airfoil chord c from the elastic axis. The kinetic

energy EK of the airfoil has the form

EK ¼

Z
c

1

2

qw

qt

� �2

þ
qu

qt

� �2
" #

rSðxÞdx ¼
1

2

Z
c

ð _hþ x_a cos aÞ2 þ ðx_a sin aÞ2
� �

rSðxÞdx, ðA:2Þ

where rS denotes the density of the airfoil per unit length. With further rearrangement of Eq. (A.2) we obtain

EK ¼
1

2
_h
2
Z

c

rSðxÞdxþ _h_a cos a
Z

c

xrSðxÞdxþ
1

2
_a2 cos2 a

Z
c

x2rSðxÞdxþ
1

2
_a2 sin2 a

Z
c

x2rSðxÞdx

¼
1

2
_h
2
mþ _h_a cos aSa þ

1

2
_a2Ia, ðA:3Þ

where

m ¼

Z
c

rSðxÞdx is the mass of the airfoil,

Sa ¼

Z
c

xrSðxÞdx is the static moment around the elastic axis EO,

Ia ¼

Z
c

x2rSðxÞdx is the inertia moment around the elastic axis EO.
Fig. A2. The elastic support of the airfoil on translational and rotational springs.

Fig. A1. The position of the elastic axis ðEOÞ, the centre of gravity ðTÞ and the airfoil chord ðcÞ.
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Fig. A3. The airfoil in neutral and deformed position.
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The potential energy V of the airfoil is

V ¼
1

2
khhh2 þ

1

2
kaaa2, (A.4)

where khh and kaa are the bending stiffness and torsional stiffness, respectively.

Kinetic and potential energy have to satisfy the Lagrange equations

d

dt

qEK

q _qj

�
qEK

qqj

þ
qV

qqj

¼ Qj , (A.5)

where qj ðj ¼ 1; 2Þ are generalized coordinates, i.e. h and a in our case, and Qj are generalized forces, i.e. the

aerodynamic force LðtÞ and the moment MðtÞ. Thus, for j ¼ 1; 2 we have

d

dt
½ _hmþ _a cos aSa� þ khhh ¼ �LðtÞ;

d

dt
½ _h cos aSa þ _aIa� þ _h_a sin aSa þ kaaa ¼MðtÞ. ðA:6Þ

Differentiation with respect to time in Eq. (A.6) yields the nonlinear equations of motion of the airfoil

m €hþ Sa €a cos a� Sa _a2 sin aþ khhh ¼ �LðtÞ; Sa
€h cos aþ Ia €aþ kaaa ¼MðtÞ. ðA:7Þ

For small values of the angle a and of its derivative _a (i.e., sin a � a, cos a � 1, _aa � 0), Eqs. (A.7) yield the well known

linearized system [see, e.g., Dowell (1995)]

m €hþ Sa €aþ khhh ¼ �LðtÞ; Sa
€hþ Ia €aþ kaaa ¼MðtÞ. ðA:8Þ

Including viscous damping terms leads to the governing equations in the form (7) and (6).
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P., Najzar, K. (Eds.), Numerical Mathematics and Advanced Applications, ENUMATH2003. Springer, Heidelberg, pp. 796–805.

Triebstein, H., 1986. Steady and unsteady transonic pressure distributions on NACA 0012. Journal of Aircraft 23, 213–219.

Tuncer, I., Wu, J., Wang, C., 1990. Theoretical and numerical studies of oscillating airfoils. AIAA Journal 28 (9), 1615–1624.

Turek, S., 1999. Efficient Solvers for Incompressible Flow Problems: An Algorithmic and Computational Approach. Springer, Berlin.

Verfürth, R., 1984. Error estimates for mixed finite element approximation of the Stokes equations. RAIRO Analyse Numérique/

Numerical Analysis 18, 175–182.


	Numerical simulation of flow induced airfoil �vibrations with large amplitudes
	Introduction
	Formulation of the problem
	Description of the fluid flow
	Description of the airfoil motion

	Discretization of the Navier-Stokes equations
	Time discretization
	Space discretization
	Stabilization of the FEM
	Computation of the force L and moment M

	Numerical results
	Validation of the method
	Modelling of flow induced airfoil vibrations

	Conclusion
	Acknowledgements
	Nonlinear equations of airfoil motion for large vibration amplitudes

	References


